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Abstract

A spectral/hp element code, incorporating a velocity–pressure formulation, is used to simulate free surface flows.

Nonlinear pressure and velocity boundary conditions are applied on the moving free surface, the tracking of which is

facilitated by the implementation of an Arbitrary Lagrangian Eulerian (ALE) formulation. The derived algorithm is

validated by comparing the numerical results evaluated here with an analytical method which predicts the damping of a

freely sloshing, viscous fluid for a range of Reynolds number: 3pRep3� 105 where Re ¼ ðgdÞ1=2d=n and g; d and n are
gravity, depth of fluid and kinematic viscosity, respectively. The free surface wall contact point is investigated and a

number of approximations to overcome the contradiction of a moving contact point and the wall no-slip condition are

presented. The numerical procedure which utilizes these approximations is tested against a linear, analytical method

which predicts viscous diffusion in the vicinity of the containing walls for a freely sloshing fluid. It is found that the

numerical results using the various formulated boundary conditions converge as the Reynolds number increases.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A major application of numerical solutions of free surface flows is the evaluation of wave forces on offshore

structures, where the accurate prediction of the loads placed on and subsequent motion of marine installations are of

paramount importance when considering the structural parameters of the body. Traditionally the majority of work in

this area has been based on potential theory which treats the flow as inviscid and irrotational. Though linear theory can

accurately predict these forces for small wave amplitudes, for naturally occurring sea conditions fully nonlinear

calculations are essential. Boundary element methods have been extensively used to computationally simulate such free

surface flows (Celebi et al., 1998; Ferrant, 1996), though recent understanding of the computational efficiency of these

algorithms has shown that the finite element method is a competitive numerical technique when a large number of

degrees of freedom is used to discretize the fluid domain (Cai et al., 1998; Wu and Eatock Taylor, 1994). The finite

element method has therefore become popular when simulating unsteady, inviscid free surface flows (Cai et al., 1998;

Wu et al., 1998; Robertson and Sherwin, 1999) and in many cases has been extended to the solution of viscous free

surface flows (Warburton and Karniadakis, 1997; Ramaswamy and Kawahara, 1987; Ramaswamy, 1989; Huerta and

Wing Kam, 1988; Robertson, 2000).

Generally viscous effects and free surface diffraction effects are not both important in the same problem for a

practical offshore structure. Though, the addition of viscous effects is necessary for the flow scenarios below:

(i) viscous damping of wave excited oscillations of offshore structures;
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(ii) flow past a body at high Keulegan–Carpenter number where free surface effects are locally important;

(iii) wave generation of submerged and floating bodies where a mean flow component causes separation;

(iv) damping of sloshing waves in a container.

A contentious aspect of the numerical evaluation of viscous free surface flows is the nature of the free surface contact

point on a wall. Though the no-slip condition is a basic premise of viscous fluid dynamics, the motion of a free surface

contradicts this condition. It can be seen experimentally that the contact point of the free surface, whilst theoretically

adhering to a no-slip condition, is in relative motion along the adjoining wall. The contact point is not identifiable with

a fluid particle. Various models are available to overcome this contradiction, either of an analytical nature (Dussan,

1976; Miles, 1991) or based on empirical data (Ting and Perlin, 1995; Hocking, 1987; Young and Davis, 1987). In most

cases the recommended boundary conditions are not suitable for implementation within a numerical code. The schemes

based on empirical data are generally extremely complicated and are dependent on the evaluation of small scale

quantities such as contact angle and surface tension variation. These effects are largely unimportant when considering

most marine and offshore problems. In addition, the schemes are dependent on the type of material at the contact walls

and specific experimental data has to be evaluated before a relevant boundary condition can be formulated. Therefore

these schemes are not applicable to a generalized free surface numerical code.

The most widely used computational model is the no-shear force or friction free condition (Huerta and Wing Kam,

1988), which is referred to in this work as the slip condition. This boundary condition does not promote the generation

of vorticity at free surface contact walls, where it is theorized that much of the dissipation of the energy of the fluid

occurs (Keulegan, 1959; Miles, 1967). Therefore this boundary condition does not give satisfactory results for many free

surface flows where viscous dissipation is important.

The nature of the free surface, in terms of its shape and velocity, is also affected by the boundary conditions placed on

the contact walls (Dussan, 1976). Therefore, models which allow the free surface contact point to be in motion whilst

also producing appreciable boundary layers on free surface contact walls are necessary to allow the full investigation of

the free surface flow of a contained body of fluid or the flow past a surface piercing structure. To this end contact wall

boundary conditions are formulated which adhere to the proviso of a moving contact point, whilst also promoting the

generation of boundary layers at the contact wall. The theorized boundary conditions are seen as an engineering

solution to the described problem and not a highly accurate physical model of the flow characteristics at the wall/free

surface contact point.

The governing equations of viscous flow are solved by utilizing the ALE formulation which allows the mesh points to

move with a velocity different to that of the velocity of the fluid, whilst adhering to some constraints for free surface

flow. This procedure alleviates the production of highly deformed elements which would affect the stability of the

computations. The first application of the ALE formulation was used in conjunction with a finite difference scheme

(Hirt et al., 1974) and has since been extensively utilized for free surface problems using the finite element method

(Huerta and Wing Kam, 1988; Ramaswamy and Kawahara, 1987). Ho (1995) developed an ALE approach to simulate

free surface flow using a spectral element discretization based on conforming quadrilaterals and this formulation has

been extended by Warburton and Karniadakis (Warburton and Karniadakis, 1997) to hybrid discretizations

incorporating triangular and tetrahedral elements (Sherwin and Karniadakis, 1995a, b), where the vorticity generation

induced by a cylinder close to a free surface is investigated. This spectral/hp element formulation ensures fast

convergence rates, minimal diffusion and dispersion errors on deformed elements (Warburton and Karniadakis, 1997)

and also allows the fluid domain to be discretized using an unstructured mesh (Sherwin, 1995). Therefore complex

geometries such as surface piercing cylinders and submerged bodies can be incorporated into the computational

domain. The benefits of the ALE and spectral/hp element formulations have therefore been utilized in this work to

generate solutions to unsteady free surface flows with viscosity.

In order to study the various flow effects of viscous fluids with a free surface, the problem of a free surface wave

undergoing free oscillations is investigated. Free oscillations occur when the free surface of a fluid has an initial

prescribed deformation or pressure distribution and is allowed to oscillate with gravity as the only external force. The

fluid motion generated by these conditions is commonly known as sloshing. Sloshing has the benefit of allowing the

investigation of important problems in free surface fluid dynamics, such as nonlinearities, generation of boundary layers

at the free surface and walls and the complex issue of the determination of the nature of the free surface contact point,

to take place in a controlled environment and without the need for inflow and outflow boundary conditions.

Sloshing has many areas of engineering application. The motion of any floating vessel on the open sea is affected by

the motion of the sea itself. If the wave-induced oscillations of the vessel are of the same resonant frequency as any fluid

containment system within it, the forces and moments resulting from the fluid motion will affect the dynamic behaviour

of the entire vessel and also place large structural loads on the surrounding walls. Oil cargo ships and liquid natural gas

carriers often have tank dimensions such that the high resonant sloshing frequencies are in the same range as the
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induced ship motions (Solaas, 1995), leading to violent sloshing motions and large impact loads. Conversely, water

tanks with internal sloshing have been fitted to ships as motion damping devices.

Advances in space flight are dependent upon the understanding of the forces and moments produced by a sloshing

liquid in a microgravity environment where viscous and free surface effects dominate the flow. Similarly sloshing effects

on the dynamic stability of light aircraft have to be considered.

Sloshing also has applications on a larger scale, for example, the fluid motion within a harbour or lake can be affected

by tidal oscillations and earthquake disturbances. These motions become increasingly important when a dam is used to

contain a large body of water which becomes excited due to earthquake activity or landslides. Not only are the impact

loads on the dam important, but also the possibility of the fluid over-spilling.

This paper is comprised of four sections, the first of which is this introduction. Section 2 formulates the governing

equations for a viscous fluid with a free surface, including nonlinear free surface boundary conditions. Also included in

this section is the boundary condition schemes which approximate a no-slip surface at the contact walls. This is

followed by Section 3 which contains the validated numerical results for sloshing of an unbounded viscous fluid and a

comparison of bounded sloshing for the various applied wall boundary conditions. The final section contains the

conclusions.

2. Governing equations for a viscous fluid with a free surface

The tank and fluid configuration can be seen in Fig. 1, where the fluid is considered to be contained within a rigid

tank of length l and depth d; the side walls are vertical and the floor is horizontal. A fixed frame of reference is defined

as Oxz where z points vertically upwards. The undisturbed free surface of the fluid is described by z ¼ 0 and the

deformation of the free surface is denoted by z where z ¼ zðx; tÞ and t represents time. The flow of a viscous,

incompressible fluid under the influence of gravity is therefore governed by the continuity equation,

= . u ¼ 0; ð1Þ

where u has components u ¼ ðuxðx; z; tÞ; uzðx; z; tÞÞ; and by the ALE Navier–Stokes equation,

@u

@t

����
w

þððu� wÞ .=Þu ¼ �
=p

r
þ nr2uþG; ð2Þ

where pðx; z; tÞ is the pressure, G ¼ ð0;�gÞ; g is the force of gravity per unit mass, n is the kinematic viscosity, r the

density and w ¼ ðwxðx; z; tÞ;wzðx; z; tÞÞ: The notation jw denotes that the derivative is evaluated on the moving frame of

reference of velocity w: This is the standard Arbitrary Lagrangian Eulerian formulation used by many investigators to

simulate free surface flow in stationary tanks (Warburton and Karniadakis, 1997; Ramaswamy and Kawahara, 1987;

Ramaswamy, 1989; Huerta and Wing Kam, 1988; Robertson, 2000). The conditions placed on the boundary of the fluid

will be discussed in Section 2.1. For convenience the notation to denote the velocity of the frame of reference on which

the time derivative is evaluated will be relaxed in subsequent discussions.
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Fig. 1. Definition of frame of reference and wall boundary conditions for contained free surface system.
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The computational code, NejTar-ALE (Beskok and Warburton, 2001; Warburton and Karniadakis, 1997), solves

the governing incompressible ALE equations by spatially discretizing the domain using spectral/hp elements

(Karniadakis and Sherwin, 1997). Using this method the expansion basis comprises a set of shape functions of

increasing polynomial order, P: The main advantage of this method is an exponential decrease in the error as P linearly

increases for smooth functions.

A high-order splitting method is implemented to temporally discretize the governing equations. The splitting scheme

used has been extensively documented and tested (Karniadakis et al., 1991) and more recently mathematically

investigated by Guermond and Shen (2003). A brief overview is given here.

The ALE governing equations (1) and (2) are temporally discretized and split into three sub-steps,

#u�
XJe�1

q¼0

aqu
n�q ¼ Dt

XJe�1

q¼0

bqNðu
n�q;wn�qÞ þ Fnþ1

 !
; ð3Þ

##u� #u

Dt
¼ �

1

r
r %p

nþ1; ð4Þ

g0u
nþ1 � ##u

Dt
¼ nLðunþ1Þ; ð5Þ

where the superscript index n refers to the relevant value being at time level tn ¼ nDt; Je is the order of the time

integration and g0 and ai are the stiffly stable time integration coefficients (Karniadakis et al., 1991). N represents the

nonlinear convection terms in the ALE Navier–Stokes equations and L represents the linear, diffusive terms.

The time integration coefficients bq can be evaluated by utilizing Taylor expansions to extrapolate an arbitrary

function at time level ðn þ 1ÞDt; f nþ1; in terms of f n�q for 0pqoJe: The values of the time integration coefficients, g0; aq

and bq are given in Table 1 up to the third order.

The intermediate values of velocity are represented as #u and ##u; where ##u is assumed to be incompressible such that,

= . ##u ¼ 0 ð6Þ

and by taking the divergence of (4) to form a Poisson equation, %p is evaluated such that,

r2
%p

nþ1 ¼ r= .
#u

Dt

� �
; ð7Þ

coupled with suitable boundary conditions. The pressure term %pnþ1 ¼ pnþ1 ensures that unþ1 is incompressible.

Although the continuity equation is imposed directly on the intermediate solution ##u; the divergence free condition of the

final solution unþ1 is enforced through the pressure Poisson equation and consistent boundary conditions.

After unþ1 has been obtained wnþ1 is evaluated, where w is the velocity of the mesh points represented by Xw ¼
Xwðx; z; tÞ and

dXw

dt
¼ w: ð8Þ

The mesh velocity is arbitrary everywhere except on the free surface and can be evaluated from a Laplacian equation

r2w ¼ 0; ð9Þ
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Table 1

Time integration coefficients for a high-order splitting scheme to solve the Navier–Stokes equations

Coefficient First order Second order Third order

g0 1 3/2 11/6

a0 1 2 3

a1 0 �1/2 �3/2

a2 0 0 �1/3

b0 1 2 3

b1 0 �1 �3

b2 0 0 1

I. Robertson et al. / Journal of Fluids and Structures 19 (2004) 525–542528



as is done here following Ho (1995). More recent work (Lohner and Yang, 1996) has advocated using a variable

coefficient within the Laplacian matrix to enhance smoothing and prevent sudden distortions. Though this was found to

be unnecessary when simulating the flow scenarios in this paper. The free surface boundary condition on w is evaluated

using the kinematic boundary condition and will be derived in Section 2.1. The next step then begins by evaluating the

mesh point locations using the stiffly stable time integration coefficients used previously (see Table 1),

g0X
nþ1
w ¼

XJe�1

q¼0

aqX
n�q
w þ Dt

XJe�1

q¼0

bqw
n�q: ð10Þ

2.1. Boundary conditions

In the following sections the pressure and velocity boundary conditions are formulated for wall boundaries and the

free surface. The wall boundaries are decomposed into walls in contact with the free surface, contact walls, and those

walls which are fully submerged and therefore not in contact with the free surface. The fully submerged walls can

subsequently be treated in a normal fashion by adhering to the no-slip boundary condition. As discussed above

alternative, pseudo-noslip boundary conditions must be formulated for the free surface contact walls.

2.1.1. Wall boundary conditions

(a) Pressure boundary condition. The pressure boundary condition on the walls for the high-order splitting scheme is

obtained by taking the contributions of the temporally discretized Navier–Stokes equation (2) in the normal direction

and using vector calculus identities to enforce divergence (Orszag et al., 1986; Karniadakis et al., 1991). The pressure

boundary condition is therefore,

1

r
@ %p

@n
¼ n . �

@u

@t

nþ1

þ
XJe�1

q¼0

bqNðu
n�q;wn�qÞ

 

þ n
XJe�1

q¼0

bqð�=�ð=�uÞn�qÞ þ Fnþ1

!
: ð11Þ

(b) Velocity boundary condition on fully submerged walls. The velocity boundary condition on walls not in contact

with the free surface, generally the floor wall, is the no-slip condition and therefore for a fixed tank:

ux ¼ 0; ð12Þ

uz ¼ 0: ð13Þ

(c) Velocity boundary condition on free surface contact walls. The velocity boundary condition specified on walls in

contact with the free surface is not well posed due to the contradiction of the moving free surface and a no-slip

condition on the bounding wall. Four alternative free surface contact wall boundary conditions have been adopted in

the current work. They are then tested in the following sections for various flow scenarios and their effect on the fluid

flow examined.

‘Slip’ wall boundary condition. The contact wall boundary problem has been overcome by many authors (Huerta and

Wing Kam, 1988; Warburton and Karniadakis, 1997) by adopting a slip boundary condition on the free surface contact

walls such that the nonpermeability condition is maintained, whilst the tangential velocity is allowed to take a nonzero

value by implementing a Neumann boundary condition at the wall. The resulting boundary conditions for the vertical

side walls are,

ux ¼ 0; ð14Þ

@uz

@x
¼ 0: ð15Þ

These conditions relate to a zero shear force premise at the walls and therefore no production of vorticity at

these walls.

‘Semi-slip’ wall boundary condition. The semi-slip boundary condition is formulated by following the ideas of Dussan

(1976), who analytically studied the lowering of an infinitely long, inclined flat plate into a fluid. At the contact point,

that is the point at which the free surface meets the plate, the fluid is allowed to slip and the no-slip boundary condition
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is approached with increasing distance from the contact point. The resulting fluid boundary conditions on the

flat plate are,

u . n ¼ Vf . n; ð16Þ

u . s ¼ UnðrÞVf . s; ð17Þ

where Vf is the velocity of the flat plate and n and s the unit normal and tangent to the plate respectively, r is the

distance along the flat-plate from the contact point and

UnðrÞ ¼
rn

1þ rn
; ð18Þ

where 0onoN and therefore limr-N Un ¼ 1; resulting in the no-slip condition being reached at infinity.

In a similar manner a semi-slip condition is computationally implemented on the contact walls, denoted by S0; with O0

representing the remainder of the boundary and interior, by regulating the velocity of the fluid depending on the

distance from the contact point. This is achieved by modifying the values of the intermediate velocity, #u where
#u ¼ ð #ux; #uzÞ; at the vertical contact walls according to the arbitrary expression,

#uwz ¼ Hð #uzÞ ¼ #uz

z þ d

zw þ d

� �2

on S0; ð19Þ

¼ #uz on O0; ð20Þ

where zw ¼ zð7 l
2
; tÞ is the displacement of the contact point on the wall. This function acts as a projection from a slip

condition at the side walls to a semi-noslip condition. The three semi-discrete sub-steps (3)–(5) used to propagate the

values of u and %p are therefore modified to,

#u�
XJe�1

q¼0

aqu
n�q ¼ Dt

XJe�1

q¼0

bNðun�q;wn�qÞ þ Fnþ1

 !
; ð21Þ

#uwx

#uwz

" #
¼

#ux

Hð #uzÞ

	 

; ð22Þ

##u� #uw

Dt
¼ �

1

r
r %p

nþ1; ð23Þ

g0u
nþ1 � ##u

Dt
¼ nLðunþ1Þ; ð24Þ

and the pressure is evaluated by

r2
%p

nþ1 ¼ rr 

#uw

Dt

� �
: ð25Þ

The contact wall boundary conditions placed on the evaluation of u in Eq. (24) are the slip boundary conditions (14)

and (15).

‘Semi-noslip’ wall boundary conditions. Another alternative is to place no-slip boundary conditions on some fraction

of the wall and slip conditions on the remainder, with the slip conditions occupying the upper portion of the wall. An

example is shown in Fig. 2 where the darker elements indicate a no-slip boundary condition on the wall and the lighter

elements a slip boundary. The designated fraction of slip elements against no-slip elements is arbitrary and therefore

user defined.

‘Robin’ wall boundary conditions. A similar method to the semi-noslip wall condition is the Robin boundary

condition, where the no-slip boundary condition is enforced at some distance from the free-surface, whilst the slip

condition is enforced on the free surface. In practice, the Robin boundary condition is specified within the top element.

Within the length of the boundary between the slip and no-slip condition the velocity is allowed to ‘‘smoothly’’ vary in

order to minimize instabilities. The condition within this slip-distance, ls; is:

ux ¼ 0; ð26Þ

a
@uz

@x
þ buz ¼ 0; ð27Þ
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where a ¼ aðzÞ and b ¼ bðzÞ: a and b can take any reasonable form, in the present work they are represented as

polynomials:

a ¼
z � zs

zf � zs

� �n

; ð28Þ

b ¼ 1� a; ð29Þ

where zs represents the vertical height of the start of the slip length, zf represents the free surface height and therefore

ls ¼ zf � zs: The value of n can take any positive value; a large value would equate to the dominance of the no-slip

contribution to the Robin boundary condition. The variation of a and b is shown in Fig. 3 for n ¼ 2; which is the value

used for all computations reported here. This choice of n results in both da=dz and db=dz being zero, thus ensuring a

smooth transition from the no-slip condition to the mixed Robin condition.

Once again the designated fraction of slip elements against Robin elements is arbitrary and therefore user defined.

The size of the slip elements will effect the computational results, though it will be shown the results converge as the

element size is decreased.

2.1.2. Free surface boundary conditions

The pressure and velocity boundary conditions on the free surface are both formulated from the dynamic constraint

of continuity of normal momentum flux across the free surface, whilst assuming negligible momentum on the air side
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Fig. 2. Placement of slip/no-slip boundary conditions for a ‘no-slip’ wall boundary condition.
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and neglecting surface tension. The component of the stress tensor in the outward normal direction is therefore,

sijnj ¼ 0; ð30Þ

by substituting in the expression for the stress tensor the free surface dynamic condition becomes

�pni þ m
@ui

@xj

þ
@uj

@xi

� �
nj ¼ 0; ð31Þ

for zero atmospheric pressure. By resolving this condition in the direction normal and tangential to the free surface we

can formulate pressure and velocity boundary conditions at the free surface.

(a) Free surface pressure boundary condition. The normal component of the dynamic free surface boundary condition

(31) gives a Dirichlet boundary condition for the pressure,

�pnini þ m
@ui

@xj

þ
@uj

@xi

� �
njni ¼ 0: ð32Þ

This condition enforces the balance between the externally applied stresses and the internal stresses. In two dimensions

where n ¼ ðnx; nzÞ and u ¼ ðux; uzÞ and neglecting surface tension

�p þ 2m
@ux

@x
n2x þ

@ux

@z
þ

@uz

@x

� �
nxnz þ

@uz

@z
n2z

� �
¼ 0: ð33Þ

Commonly this is rewritten by dividing through by n2z and representing the pressure boundary condition in terms of the

velocity and free surface gradients,

�p þ
2m

1þ @z
@x

� �2 @ux

@x

@z
@x

� �2

�
@ux

@z

@uz

@x

� �
@z
@x

þ
@uz

@z

 !
¼ 0; ð34Þ

where @z=@x ¼ �nx=nz:
(b) Free surface velocity boundary condition. The tangential component of Eq. (31) gives a Neumann boundary

condition for the free surface. The tangential contribution to the dynamic free surface boundary condition is

m
@ui

@xj

þ
@uj

@xi

� �
njsi ¼ 0; ð35Þ

where s is the unit tangent vector. By substituting s ¼ ðnz;�nxÞ the condition becomes,

2
@ux

@x
nxnz þ

@ux

@z
þ
@uz

@x

� �
n2

z �
@uz

@x
þ
@ux

@z

� �
n2x � 2

@uz

@z
nznx ¼ 0: ð36Þ

The necessary Neumann boundary conditions for the velocity are not immediately obvious, though by rearranging

Eq. (36) and using the continuity equation (1) two Neumann boundary conditions for the velocity can be formulated as,

@ux

@n
¼ �

@ux

@x
nx �

@ux

@z

@z
@x

nx �
@uz

@x

@z
@x

nx þ nz

� �
þ 2

@uz

@z
nx; ð37Þ

@uz

@n
¼

@ux

@x
2
@z
@x

1

nz

� nz

� �
þ

@ux

@z
nx

@z
@x

� �2

�1

 !
þ

@uz

@x

@z
@x

� �2

nx � 2
@uz

@z

@z
@x

nx: ð38Þ

(c) Kinematic boundary condition. The kinematic boundary condition in its most general form is

u . n ¼ w . n; ð39Þ

which simply states there is no normal flow of fluid over the free surface interface. We are not constrained however to

move the mesh velocity w with the same tangential velocity as the fluid and so can arbitrarily fix one component of w:
To limit the distortion of elements and promote a stable solution we choose to specify wx ¼ 0 and so in two dimensions

Eq. (39) can be written as,

uxnx þ uznz ¼ wznz: ð40Þ

Dividing through by nz and recognizing that @z
@x

¼ �nx

nz
we arrive at

uz ¼ wz þ ux

@z
@x

: ð41Þ

wz can be used as a Dirichlet boundary condition when evaluating the velocity w in the interior of the fluid using Eq. (9).

The choice of the Dirichlet boundary conditions for wz on the side and floor walls is arbitrary and can be linearly

ARTICLE IN PRESS
I. Robertson et al. / Journal of Fluids and Structures 19 (2004) 525–542532



evaluated from the velocity of the free surface at the wall. For example at the wall x ¼ � l
2
;

wz �
l

2
; z; t

� �
¼

z þ d

zw þ d
wz �

l

2
; zw; t

� �
; ð42Þ

where zw ¼ z 7
l

2
; t

� �
:

3. Numerical results

3.1. Validation of unbounded sloshing

Various analytical methods exist to determine the rate of decay rate of a gravity bounded wave given some initial

displacement (Landau and Lifschitz, 1959; Wu et al., 2001). In this section results evaluated using a method derived by

Landau and Lifschitz (1959) to theoretically predict damping rates for a freely sloshing fluid are compared with those

produced by the numerical algorithm. Landau and Lifschitz (1959) obtain an exact solution to the linear free surface

governing equations for a fluid with infinite depth by utilizing diffusion length characteristics. The solution can be

approximated to produce decay rates and frequencies for high or low Reynolds number flow. Here the solution is solved

exactly and is therefore applicable for flow at all Reynolds number, though the amplitude to wavelength ratio of the

wave must be small to ensure linearity. The Reynolds number is defined by

Re ¼
ðgdÞ1=2d

n
; ð43Þ

where ðgdÞ1=2 is the characteristic velocity and d the characteristic length. All physical quantities are therefore

nondimensionalized by utilizing this characteristic velocity and length. The decay rate, a; is defined by,

a ¼ a0e
�at; ð44Þ

where a is the amplitude of the wave, a0 is the initial amplitude and t represents time.

To eliminate the necessity to consider the influence of the boundary condition and the contact point of the free

surface on the fixed vertical walls, a periodic domain is utilized such that the values of the prime variables on the left-

hand side of the domain are identical to those on the right-hand side. This has the benefit of allowing the decay rate due

to the free surface boundary layer to be isolated and evaluated, though there is a minimal contribution to the decay

from the floor wall.

Before the comparison is given, the temporal and spatial convergence of the solution must be proved in order for the

results to be considered valid. This is done by conducting the same experiment for various temporal and spatial

discretizations. The fluid is initially at rest within a periodic domain of size l ¼ 2; with an initial free surface

displacement described by,

zðx; 0Þ ¼ �a0 cosðkxÞ; ð45Þ

where k ¼ 2p=l and a0 ¼ 0:005 thus ensuring a linear wave. The mesh used contains 100 quadrilateral elements and is

shown in Fig. 4 at its initial displacement. The elements are smaller at the surface and floor to capture the boundary

layer adequately, whilst relatively large elements occur in the body of the mesh due to the small velocity gradient present

in this area.

The Reynolds number of the test case is 110.736. Fig. 5(a) shows the time history of the free surface at x ¼ 1=2 for

decreasing values of Dt: It can be seen from the graph that convergence in time is satisfied as the results are nearly

ARTICLE IN PRESS

x
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

P
er

io
d

ic

P
er

io
di

c
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identical when using t ¼ 4:429� 10�3 and t ¼ 2:215� 10�3: Fig. 5(b) shows the time history of the free surface for

increasing values of p; rapid convergence in p is achieved. For values of P ¼ 5; P ¼ 7 and P ¼ 9 the results are

indistinguishable.

The comparison with the analytical results is for a case where the fluid is initially at rest within a periodic domain of

size l ¼ 0:2; with an initial free surface displacement as described by Eq. (45) k ¼ 2p=l and a0 ¼ 0:0005: These

parameters ensure a linear wave with minimal contribution to the damping of the motion from the floor wall. The

numerical grid comprises 100 quadrilateral elements and is similar to that shown in Fig. 6, though the mesh used for this

experiments has a depth many times the width of the domain. The computations were performed using a polynomial

expansion basis of order 5. The numerical experiment was conducted over a range of Reynolds number and the

displacement time history of the waves are shown in Fig. 7 for the point x ¼ �l=2 with the analytical decay rate also

shown. The good comparison between the analytical and computational decay rates can be seen in Table 2.

3.2. Comparison of contact wall boundary conditions

To be viable numerical schemes all the presented contact wall boundary conditions must spatially and temporally

converge. This convergence is proved in the following sections.
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3.2.1. Temporal and spatial convergence

Fig. 8 contains time histories of the displacement of the free surface for a sloshing fluid at x ¼ �1=2 for each

implemented boundary condition and varying temporal increments. Again the fluid is initially at rest with a sinusoidally

prescribed deformation such that,

zðx; 0Þ ¼ �a0 sinðkxÞ: ð46Þ

The governing parameters of the flow are k ¼ p=l; a0 ¼ 0:02; l ¼ 2 and Re ¼ 3132 and an expansion basis of order 5

was used. The computational mesh is comprised of 100 elements and can be seen in Fig. 6. The slip length ls used with

the semi-noslip and Robin boundary conditions is d=32: The time increment is decreased and temporal convergence is

shown both in the time histories in Fig. 8 and also in the error estimates in Table 3. The error shown is the rms error,

Erms where

Erms ¼
XN

i¼1

ðue
i � ua

i Þ
2

N

 !1=2

; ð47Þ
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Table 2

Test cases A to F for sloshing with k ¼ 2p=l; a0 ¼ 0:0005 and l ¼ 0:2 giving a comparison between the predicted decay constant, ap and

the computed decay constant, ac

Test case Re ap ac ac=ap

A 3.50178 5:57409� 10�2 5:59406� 10�2 1.00358

B 35.0178 5:65876� 10�1 5:62732� 10�1 0.994444

C 350.178 2.38943 2.41594 1.01109

D 3501.78 4:72041� 10�1 4:54660� 10�1 0.96318

E 35017.8 5:92026� 10�2 6:15687� 10�2 1.03997

F 350178 5:72630� 10�3 7:67816� 10�3 1.34086
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Fig. 8. Time history of free surface displacement for all wall boundary conditions showing temporal convergence: ——, Dt ¼
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; Dt ¼ 3:13� 10�3; 
 
 
 
 
 
 
; Dt ¼ 1:56� 10�3: (a) Slip boundary condition;

(b) semi-slip boundary condition; (c) semi-noslip boundary condition; (d) Robin boundary condition.

Table 3

Time increment error for all boundary condition schemes

Time increment

Dt ¼ 1:57� 10�2 Dt ¼ 7:83� 10�3 Dt ¼ 3:13� 10�3

B.C. Slip 0.00143657 0.000619007 0.000151621

Semi-slip 0.00209782 0.00115888 0.000438266

Semi-noslip 0.00136618 0.000589279 0.000140615

Robin 0.0013824 0.000601962 0.000103919
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and N denotes the number of sample points, ue and ua are the exact and approximate solution respectively known at N

discrete points. As no exact solution exists, the most accurate numerical solution is used in its place. For the temporal

and spatial convergence investigations ue is evaluated for Dt ¼ 5� 10�4 and P ¼ 7 respectively.

Spectral convergence is proved in a similar manner to temporal convergence. As P is increased the time histories

converge as shown in Fig. 9 and Table 4.

In order for the contact wall boundary conditions with a user defined slip length to be viable and reliable

computational schemes the numerical results should converge as the slip length is decreased. This convergence is

illustrated by the displacement time histories in Fig. 10 where the difference between the motion of the fluid decreases as

the slip length decreases. This decrease can also be seen in the error estimates in Table 5 where the most accurate

solution, ue; is attributed to ls ¼ d=64:
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; P ¼ 7: (a) Slip boundary condition; (b) semi-slip boundary condition; (c) semi-noslip boundary

condition; (d) Robin boundary condition.
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3.2.2. Comparison of analytical and numerical results for a fully bounded fluid

The decay rate of a sloshing fluid undergoing free surface standing wave motion has been evaluated numerically and

compared with an analytical formulation derived by Keulegan (1959). The analytical derivation was undertaken by

presuming the energy dissipation due to the introduction of side and bottom walls occurs within the vorticity layers

generated at these walls. The velocity within the main body of the fluid is evaluated using the well-known potential

formulation (Lamb, 1975) and close to the wall by boundary layer techniques incorporating the characteristic diffusion

length. This analytical result was found to be in good agreement with physical experiments performed by Keulegan

(1959) when the Reynolds number is high, ReE1� 106; and the main agent for diffusion is the generation of vorticity at

the side and floor walls.
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Fig. 10. Time history of free surface displacement for all wall boundary conditions showing slip length convergence: ——, ls ¼ d=32;
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 �; ls ¼ d=64: (a) Semi-slip boundary condition; (b) Robin boundary condition.

Table 5

Slip length error convergence for all boundary condition schemes

Slip length

d=32 d=48

B.C. Semi-noslip 0.000585786 0.000259526

Robin 0.0005974 0.000269809
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Fig. 11 contains displacement time histories of a free surface at x ¼ �l=2 with initial conditions given by Eq. (46) and

k ¼ p=l; a0 ¼ 0:02; l ¼ 2; 312pRep31 321 and P ¼ 5 using the various boundary conditions. The analytical decay rate

of Keulegan (1959) is also shown. When using the slip boundary condition the decay rate is too shallow due to the

exclusion of vorticity generation at the side walls. Fig. 11 also illustrates that the results when the other three boundary

conditions are implemented encouragingly converge as the Reynolds number increases.

Table 6 contains the numerical and analytical decay rates where a good comparison can be seen between the

numerical and analytical results for the two highest Reynolds numbers where the analytical formulation is valid.

3.2.3. Vorticity generation and contact point behaviour

Vorticity generation at the side walls is one of the most important functions of the applied boundary conditions when

considering the damping of an oscillating fluid or moving body within a fluid. Vorticity contours for a sloshing fluid are
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Fig. 11. Time history of free surface at x ¼ �l=2: – – – –, analytical decay rate; � 
 � 
 � 
 �; slip boundary condition; ——–, semi-slip

boundary condition; 
 
 
 
 
 
 
; semi-noslip boundary condition; — — —, Robin boundary condition. (a) Re ¼ 313; (b) Re ¼ 3132;
(c) Re ¼ 31321:

Table 6

Analytical and computationally derived decay rates where computational rates are expressed as a ratio over the analytical value

Re Analytical Slip/ Semi-slip/ Semi-noslip/ Robin/

Analytical Analytical Analytical Analytical

312 0.021887 0.886 1.53 1.93 2.046

3123 0.0084967 0.182 0.914 0.977 0.973

31231 0.0023462 0.255 1.019 0.930 0.931
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shown in Fig. 12 where t ¼ 9:40; k ¼ p=l; l ¼ 2 and Re ¼ 3123: As expected vorticity is generated at the side walls when

using the semi-slip, semi-noslip and Robin boundary conditions. The vorticity generated there is greater than that

produced by the floor wall due to the exponential increase in velocity with height. The velocity gradient at the side walls

leads to the free surface undergoing a relatively large deformation at the wall contact point, shown in Fig. 13. The free

surface at the wall is trailing the main body of the fluid due to the implementation of the pseudo-noslip boundary

conditions. As no vorticity is generated at the side walls when using the slip condition there is no deformation at the

wall contact point.
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4. Conclusion

The formulated viscous, free surface numerical code has been shown to be highly accurate when compared to

analytical decay rates for an unbounded sloshing wave. Various contact wall boundary conditions have been presented

and evaluated by comparison to an analytical derivation to calculate the damping of a fully bounded sloshing fluid.

Where the analytical results are valid, the comparison with the present numerical results has been found to be

favourable. Important applied shear forces identified by the semi-noslip boundary condition, are not captured by the

slip boundary condition. Therefore to accurately simulate industrial fluid structure interaction scenarios a pseudo-

noslip boundary condition, such as those presented here, is necessary.
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